Contributed by Elias Saltz I’ve been receiving a lot of positive feedback on the Misconception Series and I’m happy to continue writing it. I want to especially thank Eric and Cherise for encouraging me to add more posts on more topics. I hope that among all the other great things the LFC project is doing to fix construction, my little corner dedicated to dispelling misconceptions is helpful. I’m especially grateful to the manufacturer’s technical reps who agree to participate and relate the common misconceptions and help fill in the correct information. For those of you new to the misconception series, I encourage you to read the introductions to my two previous entries so you will know what it’s all about. (Editor's Note: Read post one on Gypsum Board here and Aluminum Framed Storefronts here) The reps I chose to approach for this post, Kim Shaw, along with her Technical Service Manager John Dalton of GCP Applied Technologies and Scott Baiker from Isolatek, are both active and involved CSI members that I’ve come to know well over my career. I consider them my trusted advisors when it comes to questions about their companies’ lines of fireproofing products. I’m not promoting their products over their competitors’ - it’s far more about the individual reps than the companies that they work for. 07 81 00 - Spray-Applied Fireproofing Introduction to Fireproofing Fireproofing, as covered by this specification section, typically refers to an application of a spray-applied fire-resistive material (SFRM) to steel structural framing or decking, which then greatly prolongs the time that the structure survives during a fire. Unprotected steel is extremely vulnerable to heat. “Critical failure of steel occurs when the steel reaches 537°C (1,000°F). At this point, unprotected steel is reduced to 60% of its original strength, is prone to bend and deflect and the structural load stability and physical characteristics of steel is compromised (1).” However, it doesn’t need to be nearly that hot to cause catastrophic failure; it will begin to lose strength beginning when it reaches about 300°C (572°F). Fireproofing works by insulating the steel, thereby delaying how quickly it heats up and increasing the duration that the structure will survive, allow occupants to escape, and gives emergency responders confidence that they have time to safely enter the building and fight the fire.
6 Comments
|
AboutLet's Fix Construction is an avenue to offer creative solutions, separate myths from facts and erase misconceptions about the architecture, engineering and construction (AEC) industry. Check out Cherise's latest podcast
Get blog post notifications hereArchives
March 2022
Categories
All
|